熟妇高潮喷沈阳45熟妇高潮喷_人妻丰满熟妇av无码区乱_黑人人妻AV一区二区三_少妇太爽丰满一区二区

當前位置:首頁 > 技術文章 > 蛋白質含量測定法

蛋白質含量測定法

更新時間:2019-03-18瀏覽:2100次

蛋白質含量測定法,是生物化學研究中zui常用、zui基本的分析方法之一。目前常用

的有四種古老的經典方法,即定氮法,雙縮尿法(Biuret 法)、Folin-酚試劑法(Lowry

法)和紫外吸收法。另外還有一種近十年才普遍使用起來的新的測定法,即考馬斯亮藍

法(Bradford 法)。其中 Bradford 法和 Lowry 法靈敏度zui高,比紫外吸收法靈敏 10~

20 倍,比 Biuret 法靈敏 100 倍以上。定氮法雖然比較復雜,但較準確,往往以定氮法

測定的蛋白質作為其他方法的標準蛋白質。

值得注意的是,這后四種方法并不能在任何條件下適用于任何形式的蛋白質,因為

一種蛋白質溶液用這四種方法測定,有可能得出四種不同的結果。每種測定法都不是完

美無缺的,都有其優缺點。在選擇方法時應考慮:①實驗對測定所要求的靈敏度和精確

度;②蛋白質的性質;③溶液中存在的干擾物質;④測定所要花費的時間。

考馬斯亮藍法(Bradford 法),由于其突出的優點,正得到越來越廣泛的應用。

一、微量凱氏(Kjeldahl)定氮法

樣品與濃硫酸共熱。含氮有機物即分解產生氨(消化),氨又與硫酸作用,變成硫

酸氨。經強堿堿化使之分解放出氨,借蒸汽將氨蒸至酸液中,根據此酸液被中和的程度

可計算得樣品之氮含量。若以甘氨酸為例,其反應式如下:

CH2COOH

| + 3H2SO4  2CO2 + 3SO2 +4H2O +NH3 (1)

NH2

170171

2NH3 + H2SO4  (NH4)2SO4 (2)

(NH4)2SO4 + 2NaOH  2H2O +Na2SO4 + 2NH3 (3)

反應(1)、(2)在凱氏瓶內完成,反應(3)在凱氏蒸餾裝置中進行。

為了加速消化,可以加入 CuSO4 作催化劑,K2SO4 以提高溶液的沸點。收集氨可

用硼酸溶液,滴定則用強酸。實驗和計算方法這里從略。

計算所得結果為樣品總氮量,如欲求得 樣品中蛋白含量,應將總氮量減去非蛋白

氮即得。如欲進一步求得樣品中蛋白質的含量,即用樣品中蛋白氮乘以 6.25 即得。

五種蛋白質測定方法比較如下:

方法

靈敏度

時間

原理

干擾物質

說明

凱氏定氮法

( Kjedahl

法)

靈敏度低,

適 用 于

0.2~

1.0mg 氮,

費時

8~10

小時

將蛋白氮轉化

為氨,用酸吸

收后滴定

非 蛋 白 氮

(可用三lv

乙酸沉淀蛋

白 質 而 分

用于標準蛋白

質含量的準確

測定;干擾少;

費時太長172

誤 差 為

±2%

離)

雙 縮 脲 法

Biuret

法)

靈敏度低

1~20mg

中速

20~3

0 分鐘

多肽鍵+堿性

Cu2+紫色絡

合物

硫酸銨;

Tris緩沖液;

某些氨基酸

用 于 快 速 測

定,但不太靈

敏;不同蛋白

質顯色相似

紫外吸收法 較為靈敏

50~100mg

快速

5~10

分鐘

蛋白質中的酪

氨酸和色氨酸

殘 基 在

280nm 處 的

光吸收

各種嘌吟和

嘧啶;

各種核苷酸

用于層析柱流

出液的檢測;

核酸的吸收可

以校正

Folin - 酚

試劑法

( Lowry

法)

靈敏度高

~5mg

慢速

40 ~

60

分鐘

雙縮脲反應;

磷鉬酸-磷鎢

酸試劑被 Tyr

和 Phe 還原

硫酸銨;

Tris緩沖液;

甘氨酸;

各種硫醇

耗費時間長;

操作要嚴格計

時;

顏色深淺隨不

同蛋白質變化

考馬斯亮藍

(Bradford

靈敏度zui高

1~5mg

快速

5~15

分鐘

考馬斯亮藍染

料與蛋白質結

合時,其lmax

強堿性緩沖

液;

TritonX-10

的方法;

干擾物質少;

顏色穩定;173

法)

由 465nm 變

為 595nm

0;

SDS

顏色深淺隨不

同蛋白質變化

二、雙縮脲法(Biuret 法)

(一)實驗原理

雙縮脲(NH3CONHCONH3)是兩 個分子脲經 180℃左右加熱,放出一個分子氨后得

到的產物。在強堿性溶液中,雙縮脲與 CuSO4 形成紫色絡合物,稱為雙縮脲反應。凡

具有兩個酰胺基或兩個直接連接的肽鍵,或能過一個中間碳原子相連的肽鍵,這類化合

物都有雙縮脲反應。

H2O

O=C C=O

HN NH

R-CH CH-R

O=C Cu C=O

HN NH R-CH CH-R

H2O

紫色絡合物

紫色絡合物顏色的深淺與蛋白質濃度成正比,而與蛋白質分子量及氨基酸成分無

關,故可用來測定蛋白質含量。測定范圍為 1~10mg 蛋白質。干擾這一測定的物質主

要有:硫酸銨、Tris 緩沖液和某些氨基酸等。

此法的優點是較快速 ,不同的蛋白質產生顏色的深淺相近,以及干擾物質少。主

要的缺點是靈敏度差。因此雙縮脲法常用于需要快速,但并不需要十分精確的蛋白質測

定。

(二)試劑與器材

1. 試劑:

(1)標準蛋白質溶液:用標準的結晶牛血清清蛋白(BSA)或標準酪蛋白,配制成

10mg/ml 的標準蛋白溶液,可用 BSA 濃度 1mg/ml 的 A280 為 0.66 來校正其純度。如

有需要,標準蛋白質還可預先用微量凱氏定氮法測定蛋白氮含量,計算出其純度,再根

據其純度,稱量配制成標準蛋白質溶液。牛血清清蛋白用 H2O 或 0.9%NaCl 配制,酪

蛋白用 0.05N NaOH 配制。

(2)雙縮脲試劑:稱以 1.50 克硫酸銅(CuSO4·5H2O)和 6.0 克酒石酸鉀鈉

174175

(KNaC4H4O6·4H2O),用 500 毫升水溶解,在攪拌下加入 300 毫升 10% NaOH 溶液,

用水稀釋到 1 升,貯存于塑料瓶中(或內壁涂以石蠟的瓶中)。此試劑可長期保存。若

貯存瓶中有黑色沉淀出現,則需要重新配制。

2. 器材:

可見光分光光度計、大試管 15 支、旋渦混合器等。

(三)操作方法

1. 標準曲線的測定:取 12 支試管分兩組,分別加入 0,0.2,0.4,0.6,0.8,1.0

毫升的標準蛋白質溶液,用水補足到 1 毫升,然后加入 4 毫升雙縮脲試劑。充分搖勻后,

在室溫(20~25℃)下放置 30 分鐘,于 540nm 處進行比色測定。用未加蛋白質溶液

的第1支試管作為空白對照液。取兩組測定的平均值,以蛋白質的含量為橫座標,光吸

收值為縱座標繪制標準曲線。

2、樣品的測定:取 2~3 個試管,用上述同樣的方法,測定未知樣品的蛋白質濃度。

注意樣品濃度不要超過 10mg/ml。

三、Folin—酚試劑法(Lowry 法)

(一)實驗原理

這種蛋白質測定法是zui靈敏的方法之一。過去此法是應用zui廣泛的一種方法,由于

其試劑乙的配制較為困難(現在已可以訂購),近年來逐漸被考馬斯亮蘭法所取代。此

法的顯色原理與雙縮脲方法是相同的,只是加入了第二種試劑,即 Folin—酚試劑,以

增加顯色量,從而提高了檢測蛋白質的靈敏度。這兩種顯色反應產生深蘭色的原因是:?在堿性條件下,蛋白質中的肽鍵與銅結合生成復合物。Folin—酚試劑中的磷鉬酸鹽

—磷鎢酸鹽被蛋白質中的酪氨酸和苯丙氨酸殘基還原,產生深蘭色(鉬蘭和鎢蘭的混合

物)。在一定的條件下,蘭色深度與蛋白的量成正比。

Folin—酚試劑法zui早由 Lowry 確定了蛋白質濃度測定的基本步驟。以后在生物化

學領域得到廣泛的應用。這個測定法的優點是靈敏度高,比雙縮脲法靈敏得多,缺點是

費時間較長,要精確控制操作時間,標準曲線也不是嚴格的直線形式,且專一性較差,

干擾物質較多。對雙縮脲反應發生干擾的離子,同樣容易干擾 Lowry 反應。而且對后

者的影響還要大得多。酚類、檸檬酸、硫酸銨、Tris 緩沖液、甘氨酸、糖類、甘油等均

有干擾作用。濃度較低的尿素(0.5%),硫酸納(1%),硝酸納(1%),三lv乙酸(0.5%),

乙醇(5%),yi醚(5%),丙酮(0.5%)等溶液對顯色無影響,但這些物質濃度高時,

必須作校正曲線。含硫酸銨的溶液,只須加濃碳酸鈉—氫氧化鈉溶液,即可顯色測定。

若樣品酸度較高,顯色后會色淺,則必須提高碳酸鈉—氫氧化鈉溶液的濃度 1~2 倍。

進行測定時,加 F olin—酚試劑時要特別小心,因為該試劑僅在酸性 pH 條件下穩

定,但上述還原反應只在 pH=10 的情況下發生,故當 Folin 一酚試劑加到堿性的銅—

蛋白質溶液中時,必須立即混勻,以便在磷鉬酸—磷鎢酸試劑 被破壞之前,還原反應

即能發生。

此法也適用于酪氨酸和色氨酸的定量測定。

此法可檢測的zui低蛋白質量達 5mg。通常測定范圍是 20~250mg。

(二)試劑與器材

176177

1.試劑

(1)試劑甲:

(A) 10 克 Na2CO3,2 克 NaOH 和 0.25 克酒石酸鉀鈉(KNaC4H4O6·4H2O)。

溶解于 500 毫升蒸餾水中。

(B) 0.5 克硫酸銅(CuSO4·5H2O)溶解于 100 毫升蒸餾水中,每次使用前,將

50 份(A)與 1 份(B)混合,即為試劑甲。

(2)試劑乙:

在 2 升磨口回流瓶中,加入 100 克鎢酸鈉(Na2WO4·2H2O),25 克鉬酸鈉

(Na2MoO4·2H2O)及 700 毫升蒸餾水,再加 50 毫升 85%磷酸,100 毫升濃鹽酸,

充分混合,接上回流管,以小火回流 10 小時,回流結束時,加入 150 克 硫 酸 鋰

(Li2SO4),50 毫升蒸餾水及數滴液體溴,開口繼續沸騰 15 分鐘,以便驅除過量的溴。

冷卻后溶液呈黃色(如仍呈綠色,須再重復滴加液體溴的步驟)。稀釋至 1 升,過濾,

濾液置于棕色試劑瓶中保存。使用時用標準 NaOH 滴定,酚酞作指示劑,然后適當稀

釋,約加水 1 倍,使zui終的酸濃度為 1N 左右。

(3)標準蛋白質溶液:

精確稱取結晶牛血清清蛋白或 g—球蛋白,溶于蒸餾水,濃度為 250 mg/ml 左右。

牛血清清蛋白溶于水若混濁,可改用 0.9 % NaCl 溶液。

2. 器材

(1)可見光分光光度計 (2)旋渦混合器

(3)秒表

(4)試管 16 支

(三)操作方法

1. 標準曲線的測定:取 16 支大試管,1 支作空白,3 支留作未知樣品,其余試管

分成兩組,分別加入 0,0.1,0.2,0.4,0.6,0.8,1.0 毫升標準蛋白質溶液(濃度為

250mg/ml)。用水補足到 1.0 毫升,然后每支試管加入 5 毫升試劑甲,在旋渦混合器上

迅速混合,于室溫(20~25℃)放置 10 分鐘。再逐管加入 0.5 毫升試劑乙(Folin—酚

試劑),同樣立即混勻。這一步混合速度要快,否則會使顯色程度減弱。然后在室溫下

放置 30 分鐘,以未加蛋白質溶液的第1支試管作為空白對照,于 700nm 處測定各管

中溶液的吸光度值。以蛋白質的量為橫座標,吸光度值為縱座標,繪制出標準曲線。

注意:因 Lowry 反應的顯色隨時間不斷加深,因此各項操作必須精確控制時間,

即第 1 支試管加入 5 毫升試劑甲后,開始計時,1 分鐘后,第 2 支試管加入 5 毫升試劑

甲,2 分鐘后加第 3 支試管,余此類推。全部試管加完試劑甲后若已超過 10 分鐘,則

第 1 支試管可立即加入 0.5 毫升試劑乙,1 分鐘后第 2 支試管加入 0.5 毫升試劑乙,2

分鐘后加第 3 支試管,余此類推。待zui后一支試管加完試劑后,再放置 30 分鐘,然后

開始測定光吸收。每分鐘測一個樣品。

進行多試管操作時,為了防止出錯,每位學生都必須在實驗記錄本上預先畫好下面

的表格。表中是每個試管要加入的量(毫升),并按由左至右,由上至下的順序,逐管

178179

加入。zui下面兩排是計算出的每管中蛋白質的量(微克)和測得的吸光度值。

Folin—酚試劑法實驗表格

管號 1 2 3 4 5 6 7 8 9 10

標準蛋白質 0 0.1 0.2 0.4 0.6 0.8 1.0

(250mg/ml)

未知蛋白質 0.2 0.4 0.6

(約 250mg/ml)

蒸餾水 1.0 0.9 0.8 0.6 0.4 0.2 0 0.8 0.6 0.4

試劑甲 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

試劑乙 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

每管中蛋白質

的量(mg)

吸光度值(A700

2. 樣品的測定:取 1 毫升樣品溶液(其中約含蛋白質 20~250 微克),按上述方法

進行操作,取 1 毫升蒸餾水代替樣品作為空白對照。通常樣品的測定也可與標準曲線的180

測定放在一起,同時進行。即在標準曲線測定的各試管后面,再增加 3 個試管。如上表

中的 8、9、10 試管。

根據所測樣品的吸光度值,在標準曲線上查出相應的蛋白質量,從而計算出樣品溶

液的蛋白質濃度。

注意,由于各種蛋白質含有不同量的酪氨酸和苯丙氨酸,顯色的深淺往往隨不同的

蛋白質而變化。因而本測定法通常只適用于測定蛋白質的相對濃度(相對于標準蛋白

質)。

四、改良的簡易 Folin—酚試劑法

(一)試劑

1. 試劑甲:堿性銅試劑溶液中,含 0.5N NaOH、10%Na2CO3、0.1%酒石酸鉀和

0.05%硫酸銅,配制時注意硫酸銅用少量蒸餾水溶解后,zui后加入。

2. 試劑乙:與前面的基本法相同。臨用時加蒸餾水稀釋 8 倍。

3. 標準蛋白質溶液:同基本法。

(二)操作步驟

測定標準曲線與樣品溶液的操作方法與基本法相同。只是試劑甲改為 1 毫升,室溫

放置 10 分鐘后,試劑乙改為 4 毫升。在 55℃恒溫水浴中保溫 5 分鐘。用流動水冷卻后,

在 660nm 下測定其吸光度值。

改良的快速簡易法,可獲得與 Folin—酚試劑法(即 Lowry 基本法)相接近的結果。

五、考馬斯亮蘭法(Bradford 法)181

(一)實驗原理

雙縮脲法(Biuret 法)和 Folin—酚試劑法(Lowry 法)的明顯缺點和許多限制,

促使科學家們去尋找更好的蛋白質溶液測定的方法。

1976 年由 Bradford 建立的考馬斯亮蘭法(Bradford 法),是根據蛋白質與染料相

結合的原理設計的。這種蛋白質測定法具有超過其他幾種方法的突出優點,因而正在得

到廣泛的應用。這一方法是目前靈敏度zui高的蛋白質測定法。

考馬斯亮蘭 G-250 染料,在酸性溶液中與蛋白質結合,使染料的zui大吸收峰的位

置(lmax),由 465nm 變為 595nm,溶液的顏色也由棕黑色變為蘭色。經研究認為,

染料主要是與蛋白質中的堿性氨基酸(特別是精氨酸)和芳香族氨基酸殘基相結合。

在 595nm 下測定的吸光度值 A595,與蛋白質濃度成正比。

Bradford 法的突出優點是:

(1)靈敏度高,據估計比 Lowry 法約高四倍,其zui低蛋白質檢測量可達 1mg。這

是因為蛋白質與染料結合后產生的顏色變化很大,蛋白質-染料復合物有更高的消光系

數,因而光吸收值隨蛋白質濃度的變化比 Lowry 法要大的多。

(2)測定快速、簡便,只需加一種試劑。完成一個樣品的測定,只需要 5 分鐘左右。

由于染料與蛋白質結合的過程,大約只要 2 分鐘即可完成,其顏色可以在 1 小時內保持

穩定,且在 5 分鐘至 20 分鐘之間,顏色的穩定性。因而*不用像 Lowry 法那樣

費時和嚴格地控制時間。

(3)干擾物質少。如干擾 Lowry 法的 K+、Na+、Mg2+離子、Tris 緩沖液、糖和蔗糖、甘油、巰基乙醇、EDTA 等均不干擾此測定法。

此法的缺點是:

(1)由于各種蛋白質中的精氨酸和芳香族氨基酸的含量不同,因此 Bradford 法用

于不同蛋白質測定時有較大的偏差,在制作 標準曲線時通常選用 g—球蛋白為標準蛋

白質,以減少這方面的偏差。

(2)仍有一些物質干擾此法的測定,主要的干擾物質有:去污劑、 Triton X-100、

十二烷基硫酸鈉(SDS)和 0.1N 的 NaOH。(如同 0.1N 的酸干擾 Lowary 法一樣)。

(3)標準曲線也有輕微的非線性,因而不能用 Beer 定律進行計算,而只能用標準

曲線來測定未知蛋白質的濃度。

(二)試劑與器材

1. 試劑:

(1)標準蛋白質溶液,用 g—球蛋白或牛血清清蛋白(BSA),配制成 1.0mg/ml 和

0.1mg/ml 的標準蛋白質溶液。

(2)考馬斯亮蘭 G—250 染料試劑:稱 100mg考馬斯亮蘭 G—250,溶于50ml 95%

的乙醇后,再加入 120ml 85%的磷酸,用水稀釋至 1 升。

2. 器材:

(1)可見光分光光度計

(2)旋渦混合器

(3)試管 16 支

182183

(三)操作方法

1. 標準方法

(1)取 16 支試管,1 支作空白,3 支留作未知樣品,其余試管分為兩組按表中順

序,分別加入樣品、水和試劑,即用 1.0mg/ml 的標準蛋白質溶液給各試管分別加入:

0、0.01、0.02、0.04、0.06、0.08、0.1ml,然后用無離子水補充到 0.1ml。zui后各試

管中分別加入 5.0ml 考馬斯亮蘭 G—250 試劑,每加完一管,立即在旋渦混合器上混合

(注意不要太劇烈,以免產生大量氣泡而難于消除)。未知樣品的加樣量見下表中的第 8、

9、10 管。

(2)加完試劑 2~5 分鐘后,即可開始用比色皿,在分光光度計上測定各樣品在

595nm 處的光吸收值 A595,空白對照為第 1 號試管,即 0.1mlH2O 加 5.0mlG—250

試劑。

注意:不可使用石英比色皿(因不易洗去染色),可用塑料或玻璃比色皿,使用后

立即用少量 95%的乙醇蕩洗,以洗去染色。塑料比色皿決不可用乙醇或丙酮長時間浸

泡。

考馬斯亮蘭法實驗表格:

管 號 1 2 3 4 5 6 7 8 9 10 標準蛋白質 0 0.01 0.02 0.04 0.06 0.08 0.10

(1.0mg/ml)

未知蛋白質 0.02 0.04 0.06

(約 1.0mg/ml)

蒸餾水 0.1 0.09 0.08 0.06 0.04 0.02 0 0.08 0.06

0.04

考馬斯亮藍

G-250 試劑 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

5.0

每管中的蛋

白質量(mg)

光吸收值

(A595

(3)用標準蛋白質量(mg)為橫座標,用吸光度值 A595 為縱座標,作圖,即得到

一條標準曲線。由此標準曲線,根據測出的未知樣品的 A595 值,即可查出未知樣品的

蛋白質含量。

0.5mg 牛血清蛋白/ml 溶液的 A595 約為 0.50。

2. 微量法

184185

當樣品中蛋白質濃度較稀時(10-100mg/ml),可將取樣量(包括補加的水)加大

到 0.5ml 或 1.0ml, 空白對照則分別為 0.5ml 或 1.0ml H2O, 考馬斯亮藍 G-250 試劑

仍加 5.0ml, 同時作相應的標準曲線,測定 595nm 的光吸收值。

0.05mg 牛血清蛋白/ml 溶液的 A595 約為 0.29。

六、紫外吸收法

蛋白質分子中,酪氨酸、苯丙氨酸和色氨酸殘基的苯環含有共軛雙鍵,使蛋白質具

有吸收紫外光的性質。吸收高峰在 280nm 處,其吸光度(即光密度值)與蛋白質含量

成正比。此外,蛋白質溶液在 238nm 的光吸收值與肽鍵含量成正比。利用一定波長下,

蛋白質溶液的光吸收值與蛋白質濃度的正比關系,可以進行蛋白質含量的測定。

紫外吸收法簡便、靈敏、快速,不消耗樣品,測定后仍能回收使用。低濃度的鹽,

例如生化制備中常用的(NH42SO4 等和大多數緩沖液不干擾測定。特別適用于柱層

析洗脫液的快速連續檢測,因為此時只需測定蛋白質濃度的變化,而不需知道其值。

此法的特點是測定蛋白質含量的準確度較差,干擾物質多,在用標準曲線法測定蛋

白質含量時,對那些與標準蛋白質中酪氨酸和色氨酸含量差異大的蛋白質,有一定的誤

差。故該法適于用測定與標準蛋白質氨基酸組成相似的蛋白質。若樣品中含有嘌呤、嘧

啶及核酸等吸收紫外光的物質,會出現較大的干擾。核酸的干擾可以通過查校正表,再

進行計算的方法,加以適當的校正。但是因為不同的蛋白質和核酸的紫外吸收是不相同

的,雖然經過校正,測定的結果還是存在一定的誤差。

此外,進行紫外吸收法測定時,由于蛋白質吸收高峰常因 pH 的改變而有變化,因此要注意溶液的 pH 值,測定樣品時的 pH 要與測定標準曲線的 pH 相一致。

下面介紹四種紫外吸收法:

1. 280nm 的光吸收法

因蛋白質分子中的酪氨酸、苯丙氨酸和色氨酸在 280nm 處具有zui大吸收,且各種

蛋白質的這三種氨基酸的含量差別不大,因此測定蛋白質溶液在 280nm 處的吸光度值

是zui常用的紫外吸收法。

測定時,將待測蛋白質溶液倒入石英比色皿中,用配制蛋白質溶液的溶劑(水或緩

沖液)作空白對照,在紫外分光度計上直接讀取 280nm 的吸光度值 A280。蛋白質濃度

可控制在 0.1~1.0mg/ml 左右。通常用 1cm 光徑的標準石英比色皿,盛有濃度為

1mg/ml 的蛋白質溶液時,A280 約為 1.0 左右。由此可立即計算出蛋白質的大致濃度。

許多蛋白質在一定濃度和一定波長下的光吸收值(A1%1cm)有文獻數據可查,根據

此光吸收值可以較準確地計算蛋白質濃度。下式列出了蛋白質濃度與(A1%1cm)值(即

蛋白質溶液濃度為 1%,光徑為 1cm 時的光吸收值)的關系。文獻值 A1%1cm,λ稱為百分

吸收系數或比吸收系數。

蛋白質濃度 = (A280´10 )/ A1%1cm,280nm (mg/ml)

(Q 1%濃度»10mg/ml)

例:牛血清清蛋白 : A1%1cm=6.3 (280nm)

186187

溶菌酶 : A1%1cm=22.8 (280nm)

若查不到待測蛋白質的 A1%1cm 值,則可選用一種與待測蛋白質的酪氨酸和色氨酸

含量相近的蛋白質作為標準蛋白質,用標準曲線法進行測定。標準蛋白質溶液配制的濃

度為 1.0mg/ml。常用的標準蛋白質為牛血清清蛋白(BSA)。

標準曲線的測定:取 6 支試管,按下表編號并加入試劑:

管號 1 2 3 4 5 6

BSA(1.0mg/ml) 0 1.0 2.0 3.0 4.0 5.0

H2O 5.0 4.0 3.0 2.0 1.0 0

A280

用第 1 管為空白對照,各管溶液混勻后在紫外分光光度計上測定吸光度 A280,以

A280 為縱座標,各管的蛋白質濃度或蛋白質量(mg)為橫座標作圖,標準曲線應為直

線,利用此標準曲線,根據測出的未知樣品的 A280 值,即可查出未知樣品的蛋白質含

量,也可以用 2 至 6 管 A280 值與相應的試管中的蛋白質濃度計算出該蛋白質的 A1%

1cm,280nm 2. 280nm 和 260nm 的吸收差法

核酸對紫外光有很強的吸收,在 280nm 處的吸收比蛋白質強 10 倍(每克),但核

酸在 260nm 處的吸收更強,其吸收高峰在 260nm 附近。核酸 260nm 處的消光系數

是 280nm 處的 2 倍,而蛋白質則相反,280nm 紫外吸收值大于 260nm 的吸收值。通

常:

純蛋白質的光吸收比值:A280/A260 » 1.8

純核酸的光吸收比值: A280/A260 » 0.5

含有核酸的蛋白質溶液,可分別測定其 A280 和 A260,由此吸收差值,用下面的經

驗公式,即可算出蛋白質的濃度。

蛋白質濃度=1.45×A280-0.74×A260 (mg/ml)

此經驗公式是通過一系列已知不同濃度比例的蛋白質(酵母烯醇化酶)和核酸(酵

母核酸)的混合液所測定的數據來建立的。

3. 215nm 與 225nm 的吸收差法

蛋白質的稀溶液由于含量低而不能使用 280nm 的光吸收測定時,可用 215nm 與

188189

225nm 吸收值之差,通過標準曲線法來測定蛋白質稀溶液的濃度。

用已知濃度的標準蛋白質,配制成 20~100 mg/ml 的一系列 5.0ml 的蛋白質溶液,

分別測定 215nm 和 225nm 的吸光度值,并計算出吸收差:

吸收差D= A215 -A225

以吸收差D為縱座標,蛋白質濃度為橫座標,繪出標準曲線。再測出未知樣品的吸

收差,即可由標準曲線上查出未知樣品的蛋白質濃度。

本方法在蛋白質濃度 20~100mg/ml 范圍內,蛋白質濃度與吸光度成正比,NaCl、

(NH42SO4以及 0.1M 磷酸、硼酸和 Tris 等緩沖液,都無顯著干擾作用,但是 0.1N

NaOH, 0.1M 乙酸、琥珀酸、鄰苯二甲酸、巴比妥等緩沖液的 215nm 光吸收值較大,

必須將其濃度降到 0.005M 以下才無顯著影響。

4. 肽鍵測定法

蛋白質溶液在 238nm 處的光吸收的強弱,與肽鍵的多少成正比。因此可以用標準

蛋白質溶液配制一系列 50~500mg/ml 已知濃度的 5.0ml 蛋白質溶液,測定 238nm 的

光吸收值 A238,以 A238 為縱座標, 蛋白質含量為橫座標,繪制出標準曲線。未知樣品的

濃度即可由標準曲線求得。

進行蛋白質溶液的柱層析分離時,洗脫液也可以用 238nm 檢測蛋白質的峰位。

本方法比 280nm 吸收法靈敏。但多種有機物,如醇、酮、醛、醚、有機酸、酰胺類和過氧化物等都有干擾作用。所以用無機鹽,無機堿和水溶液進行測定。若含有

有機溶劑,可先將樣品蒸干,或用其他方法除去干擾物質,然后用水、稀酸和稀堿溶解

后再作測定。

 

Contact Us
  • 聯系QQ:277124344
  • 聯系郵箱:277124344@qq.com
  • 聯系電話:19540095576
  • 聯系地址:廣州市白云區鶴正街1號中海聯8立方創意園A1棟304室

掃一掃  微信咨詢

© 2024 廣州市超博科技有限公司 版權所有  備案號:

技術支持:        GoogleSitemap

服務熱線
13760660301

微信服務號